
Weighted Networks
with Application to U.S. Domestic Airlines

Alexandre Dossin Steve Lawford

ENAC

September 22, 2016

1 / 49



Why Are We Interested in Networks?

Southwest Airlines’ (WN) Route Network, 2013Q4
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What Do We Find?

I Develop simple weighted centrality measures

I Standard unweighted measures can be generalized with only
minor modifications (typically to ensure scaling to [0, 1]).

I Can avoid misleading unweighted results e.g. minimum-step or
minimum-distance paths.

I Apply to U.S. domestic airline networks

I Generally, networks have one (or several) dominant hubs.
I Some changes in rankings for non-dominant airports, when

using weighted rather than unweighted centrality.

I Significant centrality (hub) premium

I One-standard-deviation increase in unweighted airport
centrality implies fare increase of about $17 ($8) for most
(least) central endpoint on route i.e. 5% (2%) of $350 ticket.1

I Quantitatively similar results for weighted centrality measures.

1e.g. to achieve this fare increase, the most (least) central endpoint would need to
be on 30% (3%) more shortest paths, or have 26% (11%) more routes (of total).
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What Is a Graph?

I nodes i , j (or i1, i2, . . . , in)

I edges g = (gij ) or ij ∈ g

I adjacency matrix

g =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

I gij = 0, 1 (unweighted)

I g = gᵀ (undirected)

I gii = 0 (no self-links)

4 / 49



What Is a Graph?

I nodes i , j (or i1, i2, . . . , in)

I edges g = (gij ) or ij ∈ g

I adjacency matrix

g =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

I gij = 0, 1 (unweighted)

I g = gᵀ (undirected)

I gii = 0 (no self-links)

4 / 49



What Is a Graph?

I nodes i , j (or i1, i2, . . . , in)

I edges g = (gij ) or ij ∈ g

I adjacency matrix

g =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

I gij = 0, 1 (unweighted)

I g = gᵀ (undirected)

I gii = 0 (no self-links)

4 / 49



What Is a Graph?

I nodes i , j (or i1, i2, . . . , in)

I edges g = (gij ) or ij ∈ g

I adjacency matrix

g =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

I gij = 0, 1 (unweighted)

I g = gᵀ (undirected)

I gii = 0 (no self-links)

4 / 49



What Is a Graph?

I nodes i , j (or i1, i2, . . . , in)

I edges g = (gij ) or ij ∈ g

I adjacency matrix

g =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

I gij = 0, 1 (unweighted)

I g = gᵀ (undirected)

I gii = 0 (no self-links)

4 / 49



What Is a Graph?

I nodes i , j (or i1, i2, . . . , in)

I edges g = (gij ) or ij ∈ g

I adjacency matrix

g =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

I gij = 0, 1 (unweighted)

I g = gᵀ (undirected)

I gii = 0 (no self-links)

4 / 49



Walks and Paths

I A walk is a sequence of links
ik ik+1 ∈ g with i1 = i and
iK = j , for k = 1, . . . ,K − 1.

I e.g. walk 1–2–1–3–4

I A path is a walk with
distinct nodes.

I e.g. path 1–2–3–4

I A connected graph has a
path between every i and j .

I A geodesic is the shortest
path between two nodes.

I e.g. shortest path 1–3–4
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Diameter of a Graph (= Longest Shortest Path)

I powers of adjacency matrix

g1 =

1 2 3 4


1 0 1 1 0
2 1 0 1 0
3 1 1 0 1
4 0 0 1 0

g2 =

1 2 3 4


1 2 1 1 1
2 1 2 1 1
3 1 1 3 0
4 1 1 0 1

I
∑

k g
k gives walks (paths)

of length ≤ k (k ≤ n − 1).
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Distance Matrix and Shortest Paths

I distance matrix D = (lij )
contains geodesic lengths

D =

1 2 3 4


1 0 1 1 2
2 1 0 1 2
3 1 1 0 1
4 2 2 1 0

I paths reconstructed using
variant of Dijkstra (1959) or
Floyd-Warshall (1962) algos.

I we will need all shortest
paths between i and j . . .
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Adding Edge-Weights to the Graph

I unweighted graph no info.
on strength of links ij ∈ g

I replace gij = 0, 1 with
edge-weights gw = (gw ,ij )

I weighted adjacency matrix

gw =

1 2 3 4


1 0 1 5 0
2 1 0 2 0
3 5 2 0 6
4 0 0 6 0

I applications in economics
use topology, not weights
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Shortest Paths in a Graph with Edge-Weights

I shortest paths can change
when edge-weights are used

I remember from g that
l14 = 2 (path 1–3–4)

I however, gw gives lw ,14 = 9
(path 1–2–3–4 has lower
weight but more steps than
shortest topological path)

I measures based on shortest
paths (and shortest path
lengths) may give different
results in weighted networks
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Adding Edge-Weights and Node-Weights to the Graph

I further, we can impose a
node-weight, or penalty, xi

I for simplicity, assume that
xi = x for all i (here, x = 3)

I e.g. edge-weight physical
distance between airports,
node-weight ∝ expected
waiting time at airport

I node-weights may influence
shortest path computations

I let gw (x) = (gw ,ij (x)), with
shortest path lengths lw ,ij (x)
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Shortest Paths in a Graph with Edge-/Node-Weights

I transform gw by gw ,ij (x) ={
gw ,ij (0) + x , gw ,ij (0) 6= 0
0, otherwise

I modified adjacency matrix

gw (3) =

1 2 3 4


1 0 4 8 0
2 4 0 5 0
3 8 5 0 9
4 0 0 9 0

I remember from gw that
lw ,14 = 9 (path 1–2–3–4)

I gw (3) gives lw ,14 = 17 (path
1–3–4), or lw ,14 − x = 14
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Some Special Graphs (Kn)

I complete graph Kn

I {g | ij ∈ g ∀ i , j | i 6= j}
I here, we see K5

I in economic theory, Kn is
sometimes called a (perfect)
point-to-point network

I e.g. Hendricks, Piccione &
Tan (1995, Review of
Economic Studies), and
Hendricks, Piccione & Tan
(1999, Econometrica)
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Some Special Graphs (S1,n−1)

I star graph S1,n−1, with
center i1

I {g | i1ik ∈ g | k = 2, . . . , n}
I we see S1,4, center i1 = 5

I in economic theory, S1,n−1 is
sometimes called a (perfect)
hub-and-spoke network

I e.g. Hendricks, Piccione &
Tan (1995, Review of
Economic Studies), and
Hendricks, Piccione & Tan
(1999, Econometrica)
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Some Special Graphs (Pn)

I path graph Pn

I {g | ik ik+1 ∈ g | k =
1, . . . , n − 1}

I here, we see P5 and P2

I P2 is called a dyad
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Unweighted Centrality Measures (Degree)

I degree centrality

DCi (g) =
di

n − 1

I where di =
∑

j gij is the
degree of node i

I limits on DC

DC ∈
[

1

n − 1
, 1

]
I this is the simplest measure

of node centrality

I algorithm: counting!
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Unweighted Centrality Measures (Closeness)

I closeness centrality

CCi (g) =
n − 1∑

j lij

I where lij is the length of the
geodesic between i and j

I limits on CC

CC ∈
[

2

n
, 1

]
I note

∑
j lij = n(n − 1)/2

I algorithm: distance D = (lij )
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Unweighted Centrality Measures (Betweenness)

I betweenness centrality
BCi (g) =

2

(n − 1)(n − 2)

∑
k<j | i 6=j 6=k

Pi (k, j)

P(k , j)

I where P(k , j) is the number
of geodesics between nodes
k and j , and Pi (k , j) is the
number that include node i

I limits on BC

BC ∈ [0, 1]

I algorithm: reconstruct all
shortest paths from D = (lij )
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Unweighted Centrality Measures (Eigenvector)

I eigenvector centrality

λEC (g) = g EC (g) ⇐⇒

ECi (g) = 1
λ

∑
j gij ECj (g)

I limits on EC (use
√

2EC )

EC ∈
[

0,
1√
2

]
I no connected graph attains

minimum (Kn is O(1/
√
n))

I maximum ∼ eigenvector
normalization (p = 2)a

I algorithm: eigenvector

aPapendieck & Recht (2000, LAA).
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Variation across Measures

I measures capture different
aspects of node centrality

I e.g. node 2 on no shortest
paths, close to other nodes

I node 3 is always “dominant”

node BC CC DC EC

1 0 0.75 0.67 0.74
2 0 0.75 0.67 0.74
3 0.67 1 1 0.86
4 0 0.60 0.33 0.40

19 / 49



Weighted Network Measures2

gw (0) =

1 2 3 4


1 0 1 5 0
2 1 0 2 0
3 5 2 0 6
4 0 0 6 0

I Weighted Degree

DCw ,i (gw (x)) =
dw ,i (0)

(n − 1)g∨w
,

where dw ,i (0) =
∑

j gw ,ij (0) and g∨w = max
A

gw ,ij (0), with A
the set of non-zero elements of gw (0); not a function of x .

2Clustering / centrality: Barrat, Barthélemy, Pastor-Satorras & Vespignani
(2004, PNAS), Opsahl & Panzarasa (2009, Social Networks); Centrality: Newman
(2001, Physical Review E), Brandes (2008, Social Networks), Wang, Hernandez & Van
Mieghem (2008, Physical Review E), Opsahl, Agneessens & Skvoretz (2010, Social
Networks), Wei, Pfeffer, Reminga & Carley (2011, Carnegie Mellon tech. report).
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Weighted Network Measures

Dw (3) =

1 2 3 4


1 0 1 5 14
2 1 0 2 11
3 5 2 0 6
4 14 11 6 0

I Weighted Closeness

CCw ,i (gw (x)) =
(n − 1)g∧w∑

j lw ,ij (x)
,

where g∧w = min
A

gw ,ij (0), with A non-zero elements of gw (0).
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Weighted Network Measures

Dw (3) =

1 2 3 4


1 0 1 5 14
2 1 0 2 11
3 5 2 0 6
4 14 11 6 0

unique shortest paths (x = 3):
1–2, 1–3, 1–3–4, 2–3, 2–3–4, 3–4

I Weighted Betweenness

BCw ,i (gw (x)) =
2

(n − 1)(n − 2)

∑
k<j | i 6=j 6=k

Pw(x),i (k , j)

Pw(x)(k , j)

I where Pw(x)(k , j) is the number of weighted shortest paths
between k and j , and Pw(x),i (k , j) number that include node i
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Weighted Network Measures

gw (0) =

1 2 3 4


1 0 1 5 0
2 1 0 2 0
3 5 2 0 6
4 0 0 6 0

I Weighted Eigenvector

λECw (gw (x)) = gw (0)ECw (gw (x)).

I ECw is not a function of x . As above, we report
√

2ECw .

I In some applications (if higher weight is “bad”) may need to
invert the non-zero elements of gw (0).
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Variation across Measures

I node 2 on no unweighted
shortest paths, but on 2/3
weighted x = 0 sh. paths
(1–2–3, 1–2–3–4, not 3–4)

I nodes 2 and 3 same CCw (0)

I node 2 higher ECw than
node 3 (inverted weights)

Node BC BCw (0) BCw (3) CC CCw (0) CCw (3) DC DCw EC ECw

1 0 0 0 0.75 0.23 0.15 0.67 0.33 0.74 0.88
2 0 0.67 0 0.75 0.27 0.21 0.67 0.17 0.74 0.96
3 0.67 0.67 0.67 1 0.27 0.23 1 0.72 0.86 0.55
4 0 0 0 0.60 0.13 0.10 0.33 0.33 0.40 0.08
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Data: Origin & Destination

Source:

I U.S. Department of Transportation DB1B and T-100
databases, covering 1999Q1 to 2013Q4 (domestic tickets)3

Details:

I Nonstop round-trip coach-class tickets, continental U.S.

I Aggregated to nondirectional route-carrier-quarter level

I 102,526 route-carrier-quarters, e.g., DEN PHX WN 2013 4
(Denver to Phoenix Sky Harbor, with Southwest Airlines)

I Raw database 150GB, parsed database 189MB

I 37 carriers, serving 231 airports (from ABE to YNG)

I In most of this work, we focus on 2013Q4: 1,623
route-carriers, 12 carriers, 1,134 routes, 135 airports

3e.g. Goolsbee & Syverson (2008, Quarterly Journal of Economics), Ciliberto &
Tamer (2009, Econometrica), Aguirregabiria & Ho (2012, Journal of Econometrics),
Dai, Liu & Serfes (2014, Review of Economics and Statistics).
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Data: Carriers of Interest (1999Q1 – 2013Q4)4

Legacy:

I AA (American Airlines)

I AS (Alaska Airlines)

I DL (Delta Air Lines)

I UA (United Airlines)

I US (US Airways)

Low-Cost:

I B6 (JetBlue Airways)

I F9 (Frontier Airlines)

I FL (AirTran Airways)

I NK (Spirit Airlines)

I SY (Sun Country Airlines)

I VX (Virgin America)

I WN (Southwest Airlines)

4Incomplete samples for B6 (2000Q2–), SY (1999Q3–), VX.
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Data: Representative Networks

Southwest Airlines (WN) Frontier Airlines (F9)

Denver International (DEN)

# nodes # edges diameter density5 BC CC DC EC
WN 88 522 3 0.14 0.12 0.73 0.62 0.27
F9 58 70 4 0.04 0.96 0.92 0.95 0.68

5Density is (
∑

i,j gij )/n(n − 1).
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Networks: American, Alaska, JetBlue, Delta6

6
American Airlines (AA), Alaska Airlines (AS), JetBlue Airways (B6), Delta Air Lines (DL).
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Networks: Frontier, AirTran, Spirit, Sun Country7

7
Frontier Airlines (F9), AirTran Airways (FL), Spirit Airlines (NK), Sun Country Airlines (SY).
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Networks: United, US, Virgin America, Southwest8

8
United Airlines (UA), US Airways (US), Virgin America (VX), Southwest Airlines (WN).
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Choice of Node Penalty

I Penalty x corresponds to
distance-equivalent waiting
time at stop on route

I Airbus 320/321, Boeing 737
Next Generation planes:
cruise 0.78 Mach at 35,000
feet (approx. 500 miles/h)

I Waiting time 0h, 1h, 2h
=⇒ x = 0, 500, 1000.

I e.g. American Airlines route
MSP–ORD–LGA: 1,067 or
1,567 or 2,067 (miles).
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Airport Rankings by Centrality: Frontier Airlines

I Top-ranked airport generally same for every measure, for a
given carrier (here, Denver): we call this the “dominant hub”.

I Importance of dominant hub relative to lower-ranked airports,
depends on carrier and measure; notable for BC and BCw (x).

I e.g. Denver BCw (1000) = 0.958 (rank 1)
I e.g. Chicago Midway BCw (1000) = 0.085 (rank 2)
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Airport Rankings by Centrality: Southwest Airlines

I Similar values for top five or six airports (multiple hubs).
I Dominant hub is Chicago Midway

I e.g. BCw (1000) = 0.219 and DC = 0.713

I Some variation in rankings for non-dominant hubs
I e.g. Las Vegas McCarran BC = 0.134 (rank 2)
I e.g. Las Vegas McCarran BCw (1000) = 0.090 (rank 5)
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Multiple Shortest Paths: Use BCw Instead of BC?

A variety of (un)weighted shortest paths, American Airlines, 2013Q4.
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Spatial Distribution of Dominant Hubs

I With two exceptions, dominant hub different for each carrier.

I Dominant hubs spread quite evenly across U.S.
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Correlations between Centrality Measures

Correlations, Southwest Airlines, 2013Q4

I Bloch, Jackson & Tebaldi (2016, arXiv:1608.05845v1)
I standard centrality measures characterized by same axioms
I simulated data: most correlations 0.8 – 1 (Erdős–Rényi, homophily)

I Valente, Coronges, Lakon & Costenbader (2008,
Connections), Bolland (1988, Social Networks)

I real data: average correlation 0.4 – 0.9 (58 datasets, Valente et al.)
I real data: correlations 0.5 – 0.9 (1 dataset, Bolland)
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Robustness of CCw(x) to Node-Weight: Southwest

I Note change in rankings of Chicago Midway (MDW) and
William P. Hobby Houston (HOU).
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Robustness of BCw(x) to Node-Weight: Southwest

I Note change in rankings of Lambert–St. Louis (STL) and
Dallas Love Field (DAL).
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Robustness of BCw(x) to Approximate Shortest Paths

I Robustness of BCw (1000) to inclusion of paths up to 20%
longer than true minimum-distance path.
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Illustrative Regression: Econometric Model9

I Cross sectional model with carrier fixed effects

pij = α + bi + x ′ijβnetwork + w ′ijβcontrols + uij

with

I pij = mean real fare for carrier i , route j
I bi = carrier fixed effect
I xij = network variables
I wij = control variables
I uij = error term

I Weighted least squares: pij = N−1
ij

∑Nij

k=1 pijk , where k is an

individual ticket and Nij is the carrier-route pax; weight N
1/2
ij

I Data from 2013Q4 used for illustrations
9Cochrane (2005, Chicago working paper): “Never use the words “illustrative test”

or “illustrative empirical work.” Never do illustrative work. Do real empirical work or
don’t do any at all. Illustrating technique with empirical work you don’t believe in is a
waste of space. Even if you do it, there is no faster way to get readers to fall asleep
than to tell them that what you’re doing doesn’t really matter.”
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Illustrative Regression: Related Literature

I Unweighted centrality measures to characterize network (Airline)

I Shaw (1993, Journal of Transport Geography)

I Simple hub measures as explanatory variables (Airline)

I Borenstein (1989, RAND Journal of Economics)
I Reiss & Spiller (1989, Journal of Law and Economics)
I Borenstein (1990, American Economics Review)
I Brueckner, Dyer & Spiller (1992, RAND Journal of Economics)
I Kahn (1993, Review of Industrial Organization)

I Unweighted centralities as explanatory variables (Sociology)

I Faris & Felmlee (2011, American Sociological Review)

I Unweighted centralities as explanatory variables (Finance)

I Robinson & Stuart (J. of Law, Economics & Organization)
I Hochberg, Ljunqvist & Lu (2007, Journal of Finance)
I Cohen-Cole, Kirilenko & Patacchini (2014, J. Fin. Economics)
I El-Khatib, Fogel & Jandik (2015, J. of Financial Economics)
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Illustrative Regression: Results (Unweighted Centrality)

meanrealfareij (1)10 (2) (3) (4) (5)

constant 142.70∗∗∗ 125.99∗∗∗ 23.22 154.30∗∗∗ 116.51∗∗∗

mindegreeij ∗ 10 - 7.99∗∗∗ - - -

maxdegreeij ∗ 10 - 5.85∗∗∗ - - -

minclosenessij ∗ 10 - - 14.33∗∗∗ - -

maxclosenessij ∗ 10 - - 9.71∗∗∗ - -

minbetweennessij ∗ 10 - - - 19.90∗∗∗ -

maxbetweennessij ∗ 10 - - - 4.84∗∗∗ -

mineigenvectorij ∗ 10 - - - - 15.54∗∗∗

maxeigenvectorij ∗ 10 - - - - 16.62∗∗∗

distancej/100 22.08∗∗∗ 19.15∗∗∗ 19.65∗∗∗ 20.36∗∗∗ 19.06∗∗∗

(distancej/100)2 −0.40∗∗∗ −0.30∗∗∗ −0.32∗∗∗ −0.34∗∗∗ −0.31∗∗∗

abstempdiffj −0.91∗∗ −0.88∗∗∗ −0.85∗∗ −0.84∗∗∗ −0.87∗∗∗

meangdppercapj 0.42∗ 0.46∗ 0.42∗∗ 0.39∗ 0.44∗

t100seatsij/100000 6.14∗∗ −3.99· −1.71 −0.67 −3.97
monopolyj 32.10∗∗∗ 32.39∗∗∗ 33.11∗∗∗ 31.76∗∗∗ 33.63∗∗∗

competitivej −24.80∗∗∗ −23.93∗∗∗ −23.85∗∗∗ −22.92∗∗∗ −24.61∗∗∗

carrier dummies yes yes yes yes yes
carrier × southwestj yes yes yes yes yes

adjusted R2 0.786 0.804 0.801 0.798 0.806

10Significance: *** 99.9%, ** 99%, * 95%, · 90%; White’s s.e’s.; WN omitted
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Illustrative Regression: Results (Weighted Centrality)

meanrealfareij (1)11 (2) (3) (4) (5)

constant 142.70∗∗∗ 128.45∗∗∗ 85.94 153.04∗∗∗ 125.72∗∗∗

mindegree wij ∗ 10 - 11.80∗∗ - - -

maxdegree wij ∗ 10 - 11.13∗∗∗ - - -

mincloseness w(1000)ij ∗ 10 - - 61.77∗∗∗ - -

maxcloseness w(1000)ij ∗ 10 - - 33.19∗∗∗ - -

minbetweenness w(1000)ij ∗ 10 - - - 15.47∗∗ -

maxbetweenness w(1000)ij ∗ 10 - - - 4.51∗∗∗ -

mineigenvector wij ∗ 10 - - - - 7.90∗∗∗

maxeigenvector wij ∗ 10 - - - - 7.26∗∗∗

distancej/100 22.08∗∗∗ 20.42∗∗∗ 20.60∗∗∗ 20.56∗∗∗ 21.11∗∗∗

(distancej/100)2 −0.40∗∗∗ −0.36∗∗∗ −0.33∗∗∗ −0.34∗∗∗ −0.36∗∗∗

abstempdiffj −0.91∗∗ −0.90∗∗∗ −0.90∗∗ −0.81∗∗ −0.89∗∗∗

meangdppercapj 0.42∗ 0.46∗ 0.44∗ 0.39· 0.41∗

t100seatsij/100000 6.14∗∗ −0.56 −0.39 −0.36 −2.53
monopolyj 32.10∗∗∗ 33.80∗∗∗ 32.49∗∗∗ 31.34∗∗∗ 30.73∗∗∗

competitivej −24.80∗∗∗ −25.44∗∗∗ −21.887∗∗∗ −23.58∗∗∗ −21.22∗∗∗

carrier dummies yes yes yes yes yes
carrier × southwestj yes yes yes yes yes

adjusted R2 0.786 0.796 0.802 0.797 0.804

11Significance: *** 99.9%, ** 99%, * 95%, · 90%; White’s s.e’s.; WN omitted
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Why do (Un)weighted Measures Give Similar Results(?)

I (Possible answer 1) Airline networks are very special, with few
nodes, a regulated initial state, dominant hubs, a (local)
star-type structure, and are (globally) stable. The centrality
measures would differ in other types of network.

I (Possible answer 2) Distance is not a good choice of weight,
and the topological and weighted “worlds” (networks) contain
very similar information, and are determined endogenously.12

I (Possible answer 3) Measures give similar results in rankings
and regression, but would differ in another application.

I (Possible answer 4) Standard (un)weighted centrality measures
are highly correlated, and will always give similar results.

I (Possible answer 5) Alexandre made a mistake in his code.

12Can we just ignore spatial information when analyzing airline networks?!
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Why do (Un)weighted Measures Give Similar Results(?)

I (Possible answer 1) Airline networks are very special, with few
nodes, a regulated initial state, dominant hubs, a (local)
star-type structure, and are (globally) stable. The centrality
measures would differ in other types of network.

I (Possible answer 2) Distance is not a good choice of weight,
and the topological and weighted “worlds” (networks) contain
very similar information, and are determined endogenously.14

I (Possible answer 3) Measures give similar results in rankings
and regression, but would differ in another application.

I (Possible answer 4) Standard (un)weighted centrality measures
are highly correlated, and will always give similar results.

I (Possible answer 5) Alexandre made a mistake in his code.

I (Possible answer 6) Steve made a mistake in his code.

14Can we just ignore spatial information when analyzing airline networks?!
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What Next?

I Different edge-weights (not distance, e.g. pax)

I Different node-weights (not constant)

I Different networks (not airline data)

I Directed networks (g (or gw ) not symmetric)

I Allow self-loops (aggregation)

I More data (include connecting / codesharing tickets)

I New centrality measures (local – ? – global)

I Better regression models (panel, quantile, instruments)

I Advanced econometric models (structural? game theory?)

I Network dynamics (network evolution, centrality evolution)

I Study diffusion across networks (local? global?)
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What Next? — Network Evolution

Southwest Airlines, 1999Q1 – 2013Q4 (60 quarters)
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Network Evolution — Global15

15Southwest network plot (2013Q4), density, number of nodes, number of edges
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Centrality Measure Evolution — Local16

16Betweenness, closeness, degree, eigenvector centralities.
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